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Abstract

We consider second-order accuracy MUSCL schemes to approximate the solutions of hyperbolic system of conserva-
tion laws. In the context of the 2D unstructured grids, we propose a limitation procedure on the gradient reconstruction to
enforce several stability properties. We establish that the MUSCL scheme preserves the invariant domains and satisfy a set
of entropy inequalities. A conservation assumption is not useful in the present work to define the piecewise linear approx-
imations and the proposed limitation can be understood as a systematic correction of the standard gradient reconstruction
procedure. The numerical method is applied to the compressible Euler equations. The gradient reconstruction is performed
using the characteristic variables. Several numerical tests exhibit stability and robustness of the scheme.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper deals with the numerical approximations for solving multidimensional hyperbolic system of
conservation laws on unstructured grids. Following the ideas of Perthame–Qiu [23], we propose to discuss a var-
iant of the well-known MUSCL scheme introduced by Van Leer [21]. This scheme is a finite volume method
where the flux approximation is second-order accuracy and has been leading several researches in this topic
(see [8,10,27]). In the MUSCL approaches, a slope limitation is introduced when computing the gradients.
A large literature is devoted to this limitation useful to avoid numerical oscillations (for instance, see [25]
or [26]) as for scalar conservation laws because of the TVD properties (see [14]). As soon as systems of con-
servation laws are considered, these limitations turn out to be very unnatural since the TVD properties are
thus wrong.

In the work of Perthame–Qiu [23], the authors propose to substitute the usual gradient reconstruction by
interpolations to consider a piecewise constant approximation on sub-cell and not a piecewise linear function
by cell. Next, they impose a limitation based on a conservation argument and they prove several stability
properties satisfied by the scheme. Owing a recent work of Berthon [3], we establish that classical MUSCL
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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scheme (see [21] but also [12] or [29]) based on a gradient reconstruction and the Perthame–Qiu variant based
on the interpolated values coincide. This leads us to introduce a MUSCL scheme where the limitation step
does not involve a conservation property like in [23]. This states the very discrepancy with the other stable
limitations procedure or relevant variants [23] where conservation of the gradient reconstruction is imposed.

Another motivation for this interpretation of the MUSCL scheme is given by physical arguments. Indeed,
in the present work, we consider hyperbolic system in the form
otWþ divFðWÞ ¼ 0; x 2 R2; t > 0; ð1Þ

where the state vector W belongs to a convex set V, assumed to be invariant by the flow. In general, the invari-
ance of V coincides with physical assumptions (for instance, positive density and pressure). Considering a rel-
evant CFL restriction for the second-order MUSCL scheme, we are able to ensure the numerical invariance of
V. Such a stability property is crucial for a large number of numerical simulations: strong shock interaction,
low density, multiphase models (for instance see [16] or [18]), non thermodynamical equilibrium flows [4].
From now on, let us emphasise that this stability property just requires to use a numerical scheme which pre-
serves the invariant region for the one-dimensional first-order problems (with a gradient reconstruction value
fixed to zero).

This first stability property is next completed by a set of discrete entropy inequalities. Indeed, we assume
that the weak solutions of (1) satisfy the following entropy inequality (see [19,20]):
otSðWÞ þ divFðWÞ 6 0; ð2Þ

where W! S(W) denotes a convex application. With no additional limitation on the gradient reconstruction,
we prove that approximate solutions by a MUSCL scheme satisfy a discrete form of (2). In addition, let us
note that results concerning the minimum entropy principle (see [28], but also [17]) satisfied by both Euler
equations and several derived models are given (see [4]).

The paper is organized as follows. In the following section, we describe the second-order multidimensional
scheme on an unstructured grid. This description will be very short since the considered scheme is very usual
(see [12,17,23]). This presentation is concluded by an interpretation of the gradient reconstruction which fol-
lows the idea introduced by Perthame–Qiu [23] (see also [2]). In Section 3, we give the expected stability result
concerning the invariance of the domain V and the entropy inequalities. These results are stated in the general
context and the assumptions made on the gradient reconstruction will be weaker as possible. The following
section is devoted to numerical applications where the Euler equations are considered. The MUSCL scheme
will be based on the Suliciu relaxation scheme (see [5,6] or [2,4] to further details, see also [15] to a description
of the initial relaxation scheme) and the gradient reconstruction will be performed using the characteristic
variables. Several numerical simulation, involving low density and strong shock waves, illustrate the method.
A brief conclusion achieved the paper.
2. Description of the scheme

In this section, we propose a brief description of the MUSCL scheme for an unstructured mesh. At this
level of the paper, we do not introduce innovative results and we use the usual approaches (see [12] or [23]
and references therein to further details).

First, we describe the grid uses for the second-order finite volume method. We propose to consider the var-
iant introduced by Perthame–Qiu [23]. This grid is adopted since it makes easier the proof of the stability
results stated in the following section. Of course, the other grid approaches, as proposed in [12], can be used.
For instance, the extension to the well-known cell-center or cell-vertex grids will be seen to be obvious.

Let be given a triangulation, we denote ai the vertexes of the triangles. The dual cell Xi is the volume control
associated with the vertex ai. It is delimited in joining the barycenter of all the triangles surrounding ai (see
Fig. 1). We note K(i) the number of triangles surrounding ai. For each k 2 {1, . . . ,K(i)}, we set j(k) the index
of the cell Xj(k) neighboring Xi (for short, we omit the dependence on i for j(k)). We note Cij(k) the segment
which separates Xi and Xj(k), and nij(k) the outer unit normal to Cij(k). In the sequel, |Xi| is the area of the cell
Xi while |Cij(k)| is the length of the segment Cij(k). It will be useful, in the sequel, to label the mass center of the
triangles. We set Mijk the mass center of the triangle (ai, aj, ak).



Fig. 1. Cell-center control volume: dual cell Xi.
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Now, we give the finite volume scheme to approximate the solutions of (1). The reader is referred to [12] to
complementary details. We set Wn

i an average of W(x, t) at time tn in the dual-cell Xi. The sequence Wn
i

� �
i2Z is

evolved in time as follows:
jXij
Wnþ1

i �Wn
i

Dt
þ
XKðiÞ
k¼1

jCijðkÞj/ nijðkÞ;WijðkÞ;WjðkÞi
� �

¼ 0; ð3Þ
where Wij and Wji are second-order approximations of the solution on each side of the edge Cij. The limitation
procedure to be applied in the construction of Wij is detailed latter on.

As usual, the numerical flux function /(n, WL, WR) is assumed to be locally Lipschitz-continuous and
satisfies

� consistency: /(n, W, W) = F(W) Æ n,
� conservation: /(n, WL, WR) = �/(�n, WR, WL).

After this brief presentation of the MUSCL scheme, we turn considering the main motivation of this section.
Following the ideas introduced by Berthon [3], we propose to write the scheme (3) as a relevant average of states
obtained by a first-order scheme. To access such an issue, we split the dual cell Xi as displayed in Fig. 2. The
edges aiMij(k)j(k + 1) are split into two segments separated by the new vertex mij(k)j(k + 1). To fix the idea, we
assume that mij(k)j(k + 1) is the middle of the segment aiMij(k)j(k + 1). In fact, in the present work, the location
of the vertex mij(k)j(k + 1) in the open segment aiMij(k)j(k + 1) is free. Better choices will be given latter on.
Fig. 2. Sub-cell decomposition of the dual-cell Xi.



Fig. 3. Cells XH

i and Xij as the disjoint union of triangles.
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Next, we introduce XH

i a sub-cell delimited in joining mij(k)j(k + 1) (see Fig. 2). We note Xij(k) the sub-cell
delimited in joining the vertexes Mij(k� 1)j(k), Mij(k)j(k + 1), mij(k)j(k + 1), mij(k� 1)j(k). By construction, we have
Xi ¼ XH

i [ [
KðiÞ
k¼1XijðkÞ

� �
.

For each sub-cell Xij(k), we associate the second-order inner approximate state Wij(k). We introduce the inter-
mediate state vector WH

i , associated to the sub-cell XH

i , uniquely defined as follows:
XH

i

�� ��
jXij

WH

i þ
XKðiÞ
k¼1

jXijðkÞj
jXij

WijðkÞ ¼Wn
i . ð4Þ
In fact, Wn
i is understood as a convex combination of the vectors WH

i and Wij(k). Now, on the split grid, we
propose to evolve in time these states using the basic first-order version of the scheme (3):
XH

i

�� ��Wnþ1;H
i �WH

i

Dt
þ
XKðiÞ
k¼1

CH

ijðkÞ

��� ���/ nH

ijðkÞ;W
H

i ;WijðkÞ

� �
¼ 0; ð5Þ

jXijðkÞj
Wnþ1

ijðkÞ �WijðkÞ

Dt
þ
X4

k¼1

Ck
ij

��� ���/ nk
ij;WijðkÞ;W

k
ij

� �
¼ 0; ð6Þ
where CH

ijðkÞ is the segment separating XH

i and XijðkÞ, and nH

ijðkÞ the outer unit normal. With some abuse in the
notations, we have [Ck

ij ¼ oXijðkÞ and Wk
ij denotes the values of W in the neighboring cells of Xij(k) (see

Fig. 3).
We immediately deduce that the updated solution Wnþ1

i , obtained by the classical MUSCL scheme (3) is
nothing but the following average:
Wnþ1
i ¼

XH

i

�� ��
jXij

Wnþ1;H
i þ

XKðiÞ
k¼1

jXijðkÞj
jXij

Wnþ1
ijðkÞ. ð7Þ
This formulation of the second-order scheme is central to establish the expected stability properties.
To conclude this brief presentation, we just assume that the sub-cells are the disjoint union of triangle T l

ij,
resp. T Hl

i as displayed in Fig. 3.

3. Stability analysis

With a large benefit, we use the decomposition (7) of the scheme (3). Indeed, considering a second-order
approximation of the solution on each side of the edges Cij, we are able to construct a relevant sub-grid in
order to write the scheme (3) as a first-order average scheme on the sub-grid. Let us note from now on that,
from a practical point of view, the sub-grid will never be computed. This is a crucial point since it does not
increase the cost of the method. It will be seen that solely the ratio XH

i

�� ��=jXij and jXijj=jXij are useful.
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As a consequence, we have just to consider stability analysis for the first-order scheme on the sub-grid
immediately to deduce similar results to the second-order scheme. In this way, we recall that the first-order
1D scheme derived from (3) reads as follows:
Wnþ1
i ¼Wn

i �
Dt
Dxi

/ nx;W
n
i ;W

n
iþ1

� �
� / �nx;W

n
i ;W

n
i�1

� �� �
. ð8Þ
The time step Dt satisfies the first-order CFL restriction:
Dt
min
i2Z

Dxi
max

i2Z
k nx;W

n
i ;W

n
iþ1

� ��� �� 6 1

2
; ð9Þ
where k(n, WL, WR) denotes, with some abuse in the notation, the numerical eigenvalues associated to the flux
function F evaluated at (n, WL, WR). Since it will be useful in the sequel, let us note that the CFL number
involved in (9) becomes 1 instead of 1/2 as soon as we have Wn

i ¼Wn
iþ1 in (8).

In the sequel, the 1D scheme (8) is assumed to satisfy:

H1: If Wn
i 2V then Wnþ1

i 2V for all i in Z

H2: For all i in Z, the following entropy inequalities are satisfied:
S Wnþ1
i

� �
� S Wn

i

� �
Dt

þ 1

Dxi
F nx;W

n
i ;W

n
iþ1

� �
þF �nx;W

n
i ;W

n
i�1

� �� �
6 0; ð10Þ
where F n;WL;WRð Þ denotes the entropy numerical flux function.

Now, we prove that these two stability properties are preserved by the second-order 2D scheme (3) as long
as a relevant CFL condition and a limitation procedure are considered.

Theorem 1. Let us consider the second-order 2D scheme (3) and assume that all the states Wij and WH

i belong to

V. Consider the CFL condition
Dt
Ck

ij

��� ���
T k

ij

��� ��� max k nk
ij;Wij;W

k
ij

� ���� ��� 6 1 8Xij; T k
ij; 1 6 k 6 4; ð11Þ

Dt
CH

ijðkÞ

��� ���
T H

ijðkÞ

��� ��� max kðnH

ijðkÞ;W
H

i ;WijðkÞ

��� ��� 6 1 8XH

i ; T H

ijðkÞ; 1 6 k 6 KðiÞ. ð12Þ
If the numerical flux function satisfies H1 for the reduced first-order scheme (8) then H1 is also satisfied by the
full scheme (3).

In addition, assume H2 for the reduced scheme (8), then the second-order scheme (3) satisfies the following

entropy inequalities:
1

Dt
S Wnþ1

i

� �
� Sn

i

� �
þ 1

Xi

XKðiÞ
k¼1

jCijðkÞjF nijðkÞ;WijðkÞ;WjðkÞi
� �

6 0; ð13Þ
where Sn
i is defined as follows:
Sn
i ¼

XH

i

Xi
S WH

i

� �
þ
XKðiÞ
k¼1

XijðkÞ

Xi
S WijðkÞ
� �

. ð14Þ
The first point we want highlight concerns the entropy inequalities and the definition of Sn
i . Indeed, one

want use S Wn
i

� �
instead of Sn

i to define first-order entropy inequalities. As a consequence, a second-order error
term is introduced:
1

Dt
ðS Wnþ1

i

� �
� S Wn

i

� �
Þ þ 1

Xi

XKðiÞ
k¼1

jCijðkÞjF nijðkÞ;WijðkÞ;WjðkÞi
� �

6
1

Dt
Sn

i � S Wn
i

� �� �
;
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where Sn
i � S Wn

i

� �
is positive by the Jensen inequality. In a sense to be prescribed, this error term comes from

the variation in the reconstruction step. In the present work, second-order accuracy is assumed and the def-
inition of Sn

i must be according with it (see [7]). In fact, the definition (14) we propose for Sn
i can be understood

as a quadrature formula of the definition proposed by Bouchut–Bourdarias–Perthame [7].
Before we establish the above result, it seems important to give some comments. Let us note that the

assumption Wij 2V and WH

i 2V defines the limitation procedure. An example is given in the following sec-
tion devoted to the numerical applications. We also emphasize the fact that no conservation limitations are
imposed. The very discrepancy with more classical approaches [12,23] stays in this point.

Concerning the assumption H1 and H2, they are very natural and are satisfied by most of the schemes. To
illustrate this purpose, we just recall that, arguing rotational invariance of the system (1), the numerical 2D
flux function /(n, WL, WR) may be given by a 1D flux function stated in the direction of n (see [12] to addi-
tional details). In general, stability results are proved in the 1D case: as example see [17] for a kinetic scheme,
[6] or [2] for a Suliciu relaxation scheme (the reader is also referred to [13] and references therein).

Let us emphasize that the CFL condition (11) and (12) may be seem unnatural. In fact, it is nothing but a
usual CFL restriction stated, at this time, on the sub-grid made of dual cells Xij and XH

i . This CFL restriction is
specified for each direction nk

ij and nH

ijðkÞ. At this level, we do not consider the initial mesh made of the cells Xi.
The following first-order integration lemma will be useful in the sequel

Lemma 2. Let us consider a dual-cell Xi as given Fig. 1. Assume that Xi is a disjoint union of triangles T k
i

(similarly to the case displayed Fig. 3). The following two formulas are equivalent:

(i) jXij
Wnþ1

i �Wn
i þ

XKðiÞ
jCijðkÞj/ nijðkÞ;W

n
i ;W

n
jðkÞ

� �
¼ 0; ð15Þ
Dt
k¼1

Wnþ1
i ¼

XKðiÞ T k
i

�� ��
W

nþ1;T k
i

i ; ð16Þ
(ii)
k¼1
jXij
W
nþ1;T k

i
i ¼Wn

i �
Dt

T k
i

�� �� jCijðkÞj / �nijðkÞ;W
n
i ;W

n
i

� �
þ / nijðkÞ;W

n
i ;W

n
jðkÞ

� �� �
: ð17Þ

ilarly to the reformulation (7), we note that the time evolution on a dual-cell rewrites as a relevant aver-
n (16) and (17), the average is made of first-order time evolution states since (17) coincides with the first-
scheme (8) in the direction of n .
ij(k)
Sim
age. I
order

Proof of Lemma 2. An obvious Green formula application gives
XKðiÞ
k¼1

jCijðkÞjnijðkÞ ¼ 0.
Since / nijðkÞ;W
n
i �Wn

i

� �
¼ F Wn

i

� �
� nijðkÞ, we can rewrite (15) as follows:
jXij
Wnþ1

i �Wn
i

Dt
þ
XKðiÞ
k¼1

jCijðkÞj / nijðkÞ;W
n
i ;W

n
jðkÞ

� �
� / �nijðkÞ;W

n
i ;W

n
i

� �� �
¼ 0.
We obtain (16) and (17) since we have
jXij ¼
XKðiÞ
k¼1

T k
i

�� ��.

The proof is achieved. h

Proof of Theorem 1. In the first step of the proof, the result is established on each sub-cell Xij and XH

i . For the
sake of simplicity in the presentation, we just consider the sub-cells Xij since the proof for XH

i is analogous.
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In the sub-cells Xij, we recall that the partial state Wij is evolved in time using (6). Next, we apply Lemma 2
to write (6) as a sum of first-order schemes (8) stated in each direction nij(k) and given by
Wnþ1
ij ¼

X4

k¼1

T k
i

�� ��
jXij

W
nþ1;T k

i
ij ; ð18Þ

W
nþ1;T k

ij
ij ¼Wij �

Dt

T k
ij

��� ��� Ck
ij

��� ��� / �nk
ij;Wij;Wij

� �
þ / nk

ij;Wji;W
k
ij

� �� �
. ð19Þ
Assuming H1 for (8), the CFL condition (11) ensures that the evolved state W
nþ1;T k

ij
ij belongs to V as long as

the vector states Wij and WH

i belong to V. In the same way, Wnþ1;H
i belongs to V when assuming the CFL

condition (12). Since Wnþ1
i is given by (7) and V is a convex set, we immediately deduce that Wnþ1

i belongs
to V.

Concerning the entropy inequalities (13), once again we apply Lemma 2 to write (5) and (6) as a sum of
first-order schemes (8). Next, the assumption H2 is applied to each first-order time evolution, Wnþ1;H

i and
Wnþ1

ij , and we easily obtain
1

Dt

XKðiÞ
k¼1

T Hk
i

�� ��
Xi

S W
nþ1;T Hk

i
i

� �
þ
X4

l¼1

T l
ijðkÞ

��� ���
Xi

S W
nþ1;T l

ijðkÞ
ijðkÞ

� �0
@

1
A� Sn

i

0
@

1
A

þ 1

Xi

XKðiÞ
k¼1

jCijðkÞjF nijðkÞ;WijðkÞ;WjðkÞi
� �

6 0; ð20Þ
where Sn
i is defined by (14). Since the following equality holds:
XKðiÞ
k¼1

T Hk
i

�� ��
Xi
þ
X4

l¼1

T l
ijðkÞ

��� ���
Xi

0
@

1
A ¼ 1;
the convex property of the function W! S(W) ensures
XKðiÞ
k¼1

T Hk
i

�� ��
Xi

S W
nþ1;T Hk

i
i

� �
þ
X4

l¼1

T l
ijðkÞ

��� ���
Xi

S W
nþ1;T l

ijðkÞ
ijðkÞ

� �0
@

1
AP S Wnþ1

i

� �
.

The entropy inequalities (13) is thus established and the proof is achieved. h
4. Numerical applications

In this section, we apply the limitation reconstruction when approximating the solutions of the 2D Euler
equations. The system of gas dynamics equations in two space dimensions reads:
otWþ divFðWÞ ¼ 0;
where the unknown vector is given by
W ¼ ðq; qu; qv; qEÞ;

and the flux function F(W) = (F1(W), F2(W)) is defined as follows:
F1ðWÞ ¼ ðqu; qu2 þ p; quv; ðqE þ pÞuÞ;
F2ðWÞ ¼ ðqv; quv; qv2 þ p; ðqE þ pÞvÞ;

p ¼ ðc� 1Þ qE � q
u2 þ v2

2

� �
; c 2 ð1; 3�:
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The set of admissible states is defined by
V ¼ W 2 R4; q > 0; ðu; vÞ 2 R2;E � u2 þ v2

2
> 0

	 

:

After the work of Lax [20], because of the shock waves, it is known that entropy inequalities must be considered:
otqGðln sÞ þ oxqGðln sÞuþ oyqGðln sÞv 6 0; s :¼ sðWÞ ¼ p
qc
;

where G satisfies
G0ðyÞ < 0; G0ðyÞ � cG00ðyÞ < 0 8y 2 R;
to enforce the convex property of W! qGðln sÞ.
In addition, as proved by Tadmor [28], the specific entropy s satisfies the following minimum principle:
sðx; t þ hÞP minfsðx0; tÞ; jx0 � xj 6 kuk1hg. ð21Þ

The second-order MUSCL scheme (3) we propose in the present work is based on the Suliciu relaxation
scheme (see [1,2,4–6,9]). In fact, with some benefit we use the rotational invariance of the flux function (for
instance, see [12]). We consider the 1D numerical flux function /1(WL, WR) in the x-direction to define
/ R �
1

0

� �
;WL;WR

� �
¼ R�1/1ðR �WL;R �WRÞ;
for all unitary transform R with
R �W ¼ ðq; qR �
u

v

� �
; qEÞ.
Of course, it is not a genuinely multidimensional scheme but such a procedure is very frequently used. Our
numerical procedure is thus tested in an usual context.

Let us note that the assumptions H1 and H2 are satisfied by the Suliciu relaxation scheme. In addition, the
1D first-order relaxation scheme satisfies a discrete entropy minimum principle [4]:
s Wnþ1
i

� �
P min s Wn

i�1

� �
; s Wn

i

� �
; s Wn

iþ1

� �� �
. ð22Þ
Now, we turn detailing the limitation procedure. We propose to consider the characteristic variables (q, u,
v, p). First, we assume that the second-order approximation Wij is performed using a standard gradient recon-
struction (minmod, superbee, etc., see [11,12,29]). We set
qij ¼ qn
i þ dqij;

uij ¼ un
i þ duij;

vij ¼ vn
i þ dvij;

pij ¼ pn
i þ dpij;
the standard second-order reconstruction. To apply the stability Theorem 1, we have to modify the gradient
approximation (Dqij, Duij, Dvij, Dpij) in order to enforce Wij 2V and WH

i 2V. We impose
Dqij > �qi and Dpij > �pi; ð23Þ
to obtain Wij 2V. Concerning the state WH

i , we have to enforce
qH

i > 0 and pH

i > 0; ð24Þ
where, after (4), we have
WH

i ¼
jXij
XH

i

�� ��Wn
i �

XKðiÞ
k¼1

jXijðkÞj
XH

i

�� �� WijðkÞ. ð25Þ
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In the present numerical application, we propose the following procedure:

(a) The density increments Dqij are modified to ensure
qij ¼ qn
i þ Dqij > 0;

qH

i ¼ qn
i �

PKðiÞ
k¼1

jXijðkÞj
XH

ij j DqijðkÞ > 0:

8><
>: ð26Þ
(b) With Dqij fixed in the step (a), the pressure increments Dpij are modified to ensure
pij ¼ pn
i þ Dpij > 0;

pn
i �

PKðiÞ
k¼1

jXijðkÞj
XH

ij j DpijðkÞ > 0:

8><
>: ð27Þ
(c) With Dqij and Dpij fixed in the steps (a) and (b), the velocity increments (Duij,Dvij) are modified to ensure
pH

i ¼ ðc� 1Þ ðqEÞHi �
ððquÞHi Þ

2

2qH

i

� ððqvÞHi Þ
2

2qH

i

 !
> 0; ð28Þ
where WH

i is given by (25).

It is very easy to see that that the limitations (23) and (24) are satisfied at the end of the procedure (a)–(b)–(c).
Moreover, let us remark that this procedure is well defined.

From now on, let us give several comments concerning this numerical procedure. First, since the conserva-
tion is not assumed for the gradient reconstruction, in general we do not have qH

i ¼ qn
i . To obtain the first

limitation (26), we adopt a linear approach. We set Dqij = adqij the modified density increment. In order to
satisfy (26), the coefficient a must satisfy:
qij ¼ qn
i þ adqij > 0;

qH

i ¼ qn
i �

PKðiÞ
k¼1

jXijðkÞj
XH

ij j adqijðkÞ > 0:

8><
>:
We adopt the same strategy to modify both pressure and velocity increments. We consider the same linear coef-
ficient for both velocities; i.e. we set Duij = bduij and Dvij = bdvij. This coefficient b is thus compute to enforce (28).

Of course, this numerical procedure is certainly not optimum. But it yields to very easy computations to
modify the increments dqij, duij, dvij and dpij. At this level, we have ensured the main stability results expected
for the Euler equations. After Theorem 1, the positiveness of both density and pressure is proved. In addition,
a set of entropy inequalities is satisfied. Once again, let us emphasize that the computation of the sub-grid is
not useful. Indeed, in the above formulas, solely the ratios XH

i

�� ��=jXij and |Xij|/| Xi| are involved. For practical
applications, a simple choice is given by
XH

i

�� ��
jXij

¼ jXijj
jXij
¼ 1

KðiÞ þ 1
.

These results can be completed by a minimum entropy principle.

Theorem 3. Let us consider the second-order 2D scheme (3) and assume that all the states Wij and WH

i belong to

V. Consider the CFL restriction (11) and (12). Assume that the numerical flux function of the reduced first-order

1D scheme (8) satisfies the discrete entropy minimum principle (22) then we have
s Wnþ1
i

� �
P min

16k6KðiÞ
s WH

i

� �
; s WijðkÞ
� �

; s WjðkÞi
� �� �

. ð29Þ
Let us recall that the Suliciu relaxation scheme we use satisfies this result since we have (22) for the first-
order reduced scheme.

To prove Theorem 3, we need the following technical result:
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Lemma 4. Consider the following convex sum
W ¼
XN

k¼1

akWk;
XN

k¼1

ak ¼ 1; ak P 0; ð30Þ
and assume the following entropy minimum principle
sðWkÞP min
j2HðkÞ

ðsðWjÞÞ;
where H(k) denotes a bounded set of admissible indexes. Then we have
sðWÞP min
j2[N

k¼1
HðkÞ
ðsðWjÞÞ. ð31Þ
Proof. This result is a direct consequence of the convex property of the function W! qGðln sðWÞÞ. Indeed, as
long as W satisfies (30), we have
qGðln sðWÞÞ 6
XN

k¼1

akqkGðln sðWkÞÞ.
Since G is a decreasing function, we have
Gðln sðWkÞÞ 6 G ln inj2HðkÞðsðWjÞÞ
� �� �

;

6 G ln min
j2[N

k¼1
HðkÞ
ðsðWjÞÞ

 ! !
;

and thus we have
qGðln sðWÞÞ 6
XN

k¼1

akqk

 !
G ln min

j2[N
k¼1

HðkÞ
ðsðWjÞÞ

 ! !
;

6 qG ln min
j2[N

k¼1
HðkÞ
ðsðWjÞÞ

 ! !
:

The expected inequality (31) is then immediately deduced arguing, once again, the decreasing property of G.
The proof is achieved. h

Proof of Theorem 3. The proof exactly follows the establishment of Theorem 1. Once again, we apply Lemma
2 to write (5) and (6) as a sum of first-order scheme (8) for each direction nij(k). Under the CFL condition (11)
and (12), we apply the discrete minimum principle (22) to each first-order time evolution (17). The expected
discrete entropy minimum principle (29) is thus a direct consequence of Lemma 4. h

The scheme is now applied to performed several numerical tests. We recall that the Suliciu relaxation
numerical flux function (see [4,5]) is used in the present paper. We have adopted this flux because it satisfies
all the stability assumptions H1, H2 but also (22). The reader is referred to [22] or [17] to another scheme sat-
isfying stability properties. Let us note that several 1D numerical flux functions satisfy H1 and H2 (for
instance, see [5]). Arguing the rotational invariance, they can be applied to develop robust 2D MUSCL
schemes.

All the tests are performed using the same strategy. The CFL number is fixed to 0.5 according to (11) and
(12). The gradient reconstruction is performed with the so-called Superbee limiter (see [25] but also [29] and
references therein). We have adopted this limiter because of its well-known accuracy and its instabilities (large
oscillations) when solving the Euler equations. The Superbee approach involves large oscillations when con-
sidering standard MUSCL schemes. This makes very difficult severe numerical tests. Since our procedure
makes robust the scheme, no problem will appear for severe tests. For the sake of consistency with the detailed
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scheme (3), we do not involve a second-order time accuracy. Actually, many second-order accurate time
procedures exist in the literature (for instance, see [3,17]) which preserve the robustness of the first-order accu-
rate time schemes.

The two first tests are devoted to 1D problems computed on a 2D unstructured grid (see Fig. 4). The grid is
made of a random triangulation where we have imposed amounts 125 nodes in the horizontal direction and
amounts 25 nodes in the vertical direction. First, a classical shock tube is considered. The results are displayed
in Fig. 5. Both first- and second-order numerical approximations are compared to the exact solution.

The second 1D problem concerns a very difficult problem since the density and pressure vanish. As
expected, the present variant of the MUSCL scheme does not generate negative density or pressure. The
numerical results are given Fig. 6 and compared to the exact solution.
Fig. 4. A 2D unstructured mesh for the 1D problems, 3996 nodes and 7690 triangles.

Fig. 5. Shock tube. Comparison of the exact solution and both first-order and second-order approximate solutions.
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In the next numerical experiment, we consider the double Mach reflection on a ramp proposed by Wood-
ward–Colella [30]. This test is known to be severe for the robustness and the accuracy of the schemes. It
involves discontinuous flows with very complex structures. It consists of the interaction of a planar Mach
10 shock with a 30� ramp. Ahead the shock wave, the gas has density 1.4, pressure 1 with c fixed to 1.4.
The reader is referred to [30] for a detailed description of the experiment. The test is performed when consid-
ering an unstructured grid made of 47,852 nodes and 94,847 triangles which corresponds to edge’s length
amounts 1/100. We have considered a similar thickness as proposed in [30]. The density result is displayed
Fig. 7. The obtained result is in good agreement with the results displayed in [30] (see also [24]).

We follow performing numerical experiments proposed by Woodward–Colella [30]. We consider the Mach
3 wind tunnel with a step. Initially, the wind tunnel contains a uniform gas with density 1.4, pressure 1, veloc-
ity 3 and c fixed to 1.4. The solution of this problem involves shock waves interacting with the tunnel. The test
is performed with an unstructured grid made of 20,117 nodes and 39,592 triangles which corresponds to edge’s
length amounts 1/80. The thickness of the grid is the same as imposed in [30]. The density and pressure results
are displayed in Fig. 8.

The last numerical experiment we propose is devoted to a flow around an ellipse with a Mach number of 25,
an incidence of 30� and c fixed to 1.2. This test has been introduced in [23] and turns out to be particularly
difficult since, in general, negative pressures are reported behind the body. According to the theory, the mod-
ified MUSCL scheme gives a positive solution. However, let us note that the limitation we have introduced
makes the scheme robust but does not provide the oscillations. In this test, we observe a bad residue decay.
Fig. 6. Double rarefaction waves. Comparison of the exact solution and both first-order and second-order approximate solutions.



Fig. 7. Double Mach reflection. Density at time t = 0.2, 30 isovalues from 7.55 to 21.5.

Fig. 8.

for the pressure.C.Berthon / Journal of Computational Physics 218(2006) 495–509
To decrease this residue decay, we try several limitation approaches as prescribed in [12, pp. 412–415]. In this
numerical experiment, these limitations must be separated in two families. If we do not enforce our robust
procedure, most of the standard limitations involve negative pressure. The limitation procedures performing
the test give near first-order results. Now, if we enforce the robustness, numerical results are obtained with
both families of limitations. The results remain ‘‘first-order’’ when the original limitation gave ‘‘first-order’’
results. The remaining limitation procedures give second-order numerical approximation but for a poor res-
idue decay. Concerning this numerical experiment, the best results are actually obtained in [23].

An adapted unstructured mesh made of 4810 nodes and 9421 triangles has been considered to perform the
numerical experiment. The Mach number solution is displayed in Fig. 9 when the initial data is made of
the converged first-order solution. Let us note that the same result is obtained with an initial data made of
a constant state.
Mach 3 wind tunnel with a step. Density and pressure at timet= 4, 30 isovalues from 017 to 675 for the density and from 015 to 1119
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Fig. 9. Ellipse at 25 Mach number. (a) Adapted grid made of 4810 nodes and 9421 trian
ffi0.2 to 29.508C. Berthon / Journal of Computational Physics 218 (2006) 495–509
5. Conclusion

In this paper, we propose a version of the celebrate MUSCL scheme on 2D unstructured grid. These
schemes are second-order accuracy but are known to be poorly robust. Arguing a relevant gradient recon-
struction limitation and a relevant CFL restriction, we ensure the expected robustness. When applying to
the compressible Euler equations, the resulting MUSCL scheme preserves the positiveness of both density
and pressure. This robustness of the method is supplemented by a set of discrete second-order entropy inequal-
ities. Moreover, in the context of the Euler equations, we establish a discrete entropy minimum principle. This
limitation turns out to be very easy and its numerical implementation does not involve technical difficulties. In
addition, this limitation can be considered with any MUSCL schemes and thus enforces the expected robust-
ness but it does not increase the cost of the scheme. To illustrate the method, we have performed several
numerical tests. In the literature, most of them are considered as severe.
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